Ratios

I'm an avid hot-rodder. I like putting BIG engines in SMALL cars. One way to compare the performance of a vehicle is the "Power to Weight Ratio."

I built a car a few years ago from scratch. It has a 120hp engine. That doesn't sound like much, but it was plenty quick. The car itself weighed 1275lbs.

$$
\begin{aligned}
\text { Power to Weight Ratio } & =\frac{1275}{120} \\
& =10.625 \mathrm{lbs} / \mathrm{hp}
\end{aligned}
$$

How can we compare that? Let's look at a modern full size pickup. They weigh around 6000lbs. How much power would I need to be comparable in performance?

Ratios!
Say in your head:
"THIS compares to THIS, in the same way THAT compares to THAT."
In our case, my car's 120hp "compares to" its 1275 lbs , "in the same way" the truck's horsepower "compares to" the truck's 6000lbs.

We write it like this:
$\frac{120 \mathrm{hp}}{1275 \mathrm{lbs}}=\frac{\mathrm{X}}{6000}$

HANDY TIP: Always write your ratio with the unknown at the top.
That saves a step in moving the X on top in the solving. It works!

And solve for X :

720000
1275lbs $=\mathrm{X}$
564.7hp $\quad=\quad \mathrm{X}$

Most modern full size pickups are around 325 horsepower.

Let's try another example.
An \$80 pair of shoes typically lasts me a year (12 months). How much would a \$350 pair of shoes have to last me?

Note: I'm asking about time, so place the unknown "time" on the top
$\frac{\text { Time }}{\operatorname{Cos} t} \quad \frac{12 \mathrm{mo}}{\$ 80}=\frac{\mathrm{X}}{\$ 350}$

$$
\frac{4200}{\$ 80}=\quad \mathrm{X}
$$

$$
\frac{52.5}{12 \text { (months in a year) }}=\quad \mathrm{X}
$$

4 years 6 months $\quad \mathrm{X}$

